 Cliffordons  David R. Finkelstein At higher energies the present complex quantum theory with its unitary group might expand into a real quantum theory with an orthogonal group, broken by an approximate $i$ operator at lower energies. Implementing this possibility requires a real quantum doublevalued statistics. A Clifford statistics, representing a swap (12) by a difference $\gamma_1\gamma_2$ of Clifford units, is uniquely appropriate... Downloads: 1  
 Chronon corrections to the Dirac equation  Andrei A. Galiautdinov The Dirac equation is not semisimple. We therefore regard it as a contraction of a simpler decontracted theory. The decontracted theory is necessarily purely algebraic and nonlocal. In one simple model the algebra is a Clifford algebra with 6N generators. The quantum imaginary $\hbar i$ is the contraction of a dynamical variable whose backreaction provides the Dirac mass. The simplified Dirac equation is exactly Lorentz invariant but its symmetry group is SO(3,3), a decontraction of the Poinca... Downloads: 27 (1 review)  
 Unimodular relativity and cosmological constant  David R. Finkelstein Unimodular relativity is a theory of gravity and spacetime with a fixed absolute spacetime volume element, the modulus, which we suppose is proportional to the number of microscopic modules in that volume element. In general relativity an arbitrary fixed measure can be imposed as a gauge condition, while in unimodular relativity it is determined by the events in the volume. Since this seems to break general covariance, some have suggested that it permits a nonzero covariant divergence of the ... Downloads: 13  
